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FIG. 1. Four basic tiles (Rhombohedron, Dodecahedron,
Icosahedron, and Triacontahedron) with direction mark-
s. The marks on them illustrate how they match each
other. The matching rule related to the marks are shown
in Fig. 13 at the end of the paper. The pictures are
rescaled here to please the eye. The side lengths of the
four tiles should be the same in reality.

FIG. 2.

I. THE GENERAL GROWTH ALGORITHM

For the Z-tiling, there are four basic tiles: Rhom-
bohedron, Dodecahedron, Icosahedron, and Triacon-
tahedron shown in Figure 1. The mark points on the
faces of a tile show how it is oriented and are relat-
ed to matching rules between tiles shown in Figure
13. A complete vertex is defined as a vertex fully
surrounded by several tiles. The possible complete
vertex configurations are limited and compiled as
Table I. Each row of the table represents a set of
tiles fully surrounding a vertex legally.

Let’s take row 20 as an example. There are five
rhombohedrons and one icosahedron around a ver-
tex, which is the original point here, as shown in
Table I. Follow the instructions of Table I and

II, we could construct the configuration shown in
Fig. 2. The icosahedron is defined by I612345,
which means the icosahedron has the starting point
e1 + e2 + e3 + e4 + e5, circled in green. The
subscript 6 means the icosahedron is in the 6th
direction, 5̄4̄3̄2̄1̄, listed in Table II, which mean-
s the ending point of the icosahedron should be
e1+e2+e3+e4+e5+(−e5)+(−e4)+(−e3)+
(−e2) + (−e1) = 0, consistent with Fig. 2. Sim-
ilarly, we could get the starting points for rhombo-
hedrons marked in orange, and the ending point of
all rhombohedrons is −e6, also consistent with Fig.
2. Following the same steps, we could rebuild all 27
types of configurations in Table I.

With the discussion above, we define the set
formed by the i-th row of Table I as Qi. In order to
grow a cluster from a seed cluster, we need to check
the incomplete vertices in the cluster. If we grow
from a legal seed, the tiles around an incomplete
vertex v form a set T (v), which must be a subset of
one or more Qi’s, with i as different integers from 1
to 27 representing 27 different types of vertex con-
figurations. The complement of T (v) in Qi contains
available legal tiles to be added. We define the com-
plement sets as Ti(v)’s. The common tiles in Ti(v)’s
are called forced tiles, and they should to be added
to T (v). However, if we grow from an illegal seed,
we might encounter some illegal vertices with ille-
gal T (v), which is not a subset of any Qi. In this
case, we should not consider those illegal vertices
during the growing process any more. The vertex
we need to check every time should be selected ran-
domly among all legal vertices in the cluster. With
the growth of the cluster, there would be more and
more vertices and tiles in it. If there’s no forced
tile in a cluster after the last tile added, the whole
cluster would be stuck and stops growing.

II. TWO SPECIAL CASES

Unlike A-tiling, there are two special cases to be
considered apart from the general growth algorith-
m for Z-tiling due to ambiguities in the process of
growing. Theoretically, a legal seed could generate a
cluster whose growth would stop when it meets the
worm planes, which means the final cluster should
look like an object with planar ”faces” cut by sev-
eral planes. However, if we grow the cluster only by
the general growth algorithm for the Z-tiling, a legal
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FIG. 3.

seed could result in a weird cluster with ”caves” and
rough faces outside sometimes as Figure 3 (a) shows.
Generally, the ”caves” have two basic patterns: the
one in the blue circle, and the one in the green cir-
cle in Fig. 3 (a). Those two patterns are the two
special cases to be discussed below. After solving
those two special cases, the cluster would continue
growing and finally stops as Figure 3 (b),which is as
expected with planar ”faces”.

In the two special cases, tiles to be added should
also be decided by vertices near the reference point
apart from it. The following discussion came from
the careful observation of the 27 vertex types and the
combination of tiles of them. The two special cases
could be illustrated in different ways. The following
way is a compact, sufficient and necessary one we
have.

The tiles in Fig. 4 and Fig. 6 are marked with
numbers. One could rebuild those tiles with the help
of Table IV.

A. Special case 1

If a vertex has five rhombohedrons and two tria-
contahedrons around it and the combination of the
tiles is the same as Fig. 4(a), where the white point
in the middle represents the reference point, we have
to consider the two nearby vertices shown as the
blue points to determine what kind of tile should
be added to the reference point since it is ambigu-
ous currently (it is a subset of both row 21 and row
23 of Table I in certain rotations as Fig. 5 (a)-(b)
show).

The way we consider the two blue points is to ex-
amine the tiles around them. As shown in Fig. 4(b),
if the upper blue vertex has and only has tiles 1, 4,
and 8 around it, and the lower blue vertex has and
only has tiles 2, 4, and 9, we say the ambiguity would
be avoided. In such a case, the combination in Fig.
5(b) would be impossible since it would make the
two blue vertices illegal. So the only choice would
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be the triacontahedron in Fig. 5(a) and the tile 10
in Fig. 4(d) should be added to the cluster. If we
go back and only consider the reference vertex now,
the determined tiles around it would form the con-
figuration of Fig. 4(c).

Note that the triacontahedron cannot be added
via the general growth algorithm in such a case al-
though it is not ambiguous since we are taking the
two nearby vertices into consideration instead of on-
ly the reference vertex.

B. Special case 2

The basic methodology of the second special case
is similar to the first one. The second case involves a
special pattern shown in Fig. 6(a) with two rhombo-
hedrons and two triacontahedrons. The ambiguity
occurs here since both row 19 and row 23 in Table
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IV are possible as Fig. 7(a)-(b) show.
To avoid the ambiguity, we consider the four n-

earby vertices marked as blue points in Fig. 4(a).
If those blue vertices have and only have the tiles
1-4 and tiles 8-12 around them shown in Fig. 4(b),
then we say the ambiguity would be avoided since
the combination of Fig. 7(b) would make the blue
points illegal. The only choice here is to add two
icosahedrons in the way shown in Fig. 6(d). If we
go back and only consider the reference vertex now,
the determined tiles would form the pattern shown
in Fig. 6(c).

III. INFINITE SEED

The discovery of the infinite growth of Z-tiling re-
quires an infinite seed. Though Z-tiling and A-tiling
share a lot of similarities when it comes to the con-
cept of perp-space and window, the way we find the

FIG. 8. Perp-space positions of vertices associated with
an illegal seed

infinite seed for Z-tiling is quite different from the
case in A-tiling due to the increased complexity of
configurations. Though we did not find a general
way to beget a infinite seed like the work done for
A-tiling, we do figure out a particular infinite seed
which could help us understand the characteristics
of Z-tiling better. The particular case must conform
to the common conditions for an infinite seed. The
vertices in the perp-space should constrain the loca-
tion and scale of the perp-space window shown in
Fig. 8. The particular seed is generated by divid-
ing the whole space into four regions with different
β’s and is shown in Fig. 12(a). The rhombohedrons
are neglected since the illegal skinny tiles are incom-
patible with the illustration system in the growth
algorithm and the spaces could be fulfilled during
the growing process.

If we grow from the seed, the defects of the clus-
ter would grow approximately linearly which can be
seen intuitively in Fig. 9(a). Fig. 9(b) tells us the
illegal vertices are constrained in the worm planes
intersecting at the original point. By counting the
number of illegal vertices during growing process, we
get the data shown in Fig. 10, which strongly imply
the linear relation between the number of illegal ver-
tices and the one-dimentional scale of the cluster.
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FIG. 10. Fitting line in orange: y = −4.40 + 42.57x

IV. DISCUSSION

There is a possible way to prove the feasibility of
an infinite growth for Z-tiling in general. The legal
cluster has the characters of self-similarity and self-
inversion. It means that a single tile could be inflat-
ed first and then be divided into several compatible
matching tiles. On the other hand, particular con-
figurations of tiles could be transformed into one big
tile. In other words, we could generate a new legal
cluster purely from an old legal cluster by inflating it
and dividing it, or finding those particular configu-
rations and transform them into big tiles and deflate
the cluster into a smaller one. To make it clear, sup-
pose we have a legal cluster of tiles and those tiles
constitute a set C. If we could not find any more
forced tile for C, which means it represents a cluster
not growing any more by the general growth algo-
rithm with special cases, we could use bigger tiles
with the scale factor τ2 to substitute the original
ones by self-similarity rules, and get a new set of
tiles, C ′. Then we deflate the cluster and acquire a
set of regular sized tiles, C ′′. C ′′ must be a subset
of C. If C is a set which could not grow further,
we can draw the conclusion that C ′′ could not grow
further either, which results in a contradiction if the

(a) (b)
FIG. 11. Legal seed with the stuck cluster. The pictures
are rescaled to please the eye

(a) (b)

FIG. 12. illegal seed with the stuck cluster. The pictures
are rescaled to please the eye

original seed cluster was a subset of C ′′. So we have
the following claim: in order to grow the cluster into
C by the general growth algorithm with special cas-
es, we must start from a seed cluster which contains
tiles not belonging to C ′′. If we inflate the seed clus-
ter and C ′′ by τ2 in the claim above, we could get
a new equivalent and more practical claim: in order
to grow the cluster into C by the general growth al-
gorithm with special cases, the seed cluster we grow
from must have the character that once it was inflat-
ed by τ2, it should contain tiles not belonging to C ′.
More intuitively, it means the inflated seed cluster
should cover the spaces that C does not cover.

Consider a legal seed shown in Fig. 11(a). The
seed could grow to a big stuck cluster shown by the
opaque tiles in Fig. 12(b). From our claim above,
we can conjecture that after inflating the seed clus-
ter, it would outstrip the range of the stuck cluster.
The inflated seed tiles are shown by translucent tiles
shown in Fig. 12(b), which obviously verifies our
claim.

If we could generalize the claim into a cluster with
limited illegal tiles and vertices, we could easily veri-
fy whether the illegal seed could generate an infinite
cluster or not. Assume the claim was true, then we
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need to inflate the illegal seed cluster (Fig. 12(a))
and compare it with the cluster we get till now after
we stopped the growth process manually. Since the
cluster is huge, we use black dots in Fig. 12(b) to
represent the vertices in the cluster to show the po-
sition and scale of the big cluster. The seed cluster
in Fig. 12(b) was the one after the inflation. It can
be seen clearly that the whole inflated seed cluster
was completely covered by the huge cluster after the
growth. So if the claim for illegal clusters were also
true, we could draw the conclusion that there exists
an illegal seed that could grow to infinity.
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TABLE I. The complete vertex catalog for Z-tiling. Each row represents a unique type of vertex with several
particular tiles around it to make it complete. There are 27 types of them regardless of rotations. If one wants to
consider rotations, check the comments in Table III. In this table, R,D, I, T represent the tile types: Rhombohedron,
Dodecahedron, Icosahedron, and Triacontahedron. The subscript number like 26 in D26 is the direction index leading
to a particular direction of the tile shown in Table II. The series of numbers after the tile type is the coordinates
of the starting point to draw a tile, which is considered as the original point in Table II. The overbars indicate the
negative directions. For example, D261̄3̄4̄ indicates that, taking vstart = −e1 − e3 − e4 as the starting point for
a dodecahedron, we could say that the dodecahedron’s vertices are the coordinates of vertices generated by Table II
plus vstart.

1 D261̄3̄4̄ R41̄ D71̄3̄5 R83̄

2 I52̄ I85 R72̄5 R62̄5

3 I512̄3̄4 D104 R161 R204

4 I52̄3̄46 R103̄ R166 D353̄4̄6

5 T 1̄2̄3̄4̄6̄ T 1̄ R1424̄ R1224̄

6 I65 T 1̄4̄5̄ R1656 R2056

7 I62345 R172 R165 I123̄4̄5

8 T 1̄2̄3̄ D15 I81̄3̄6̄ D5 R6

9 T 1̄2̄3̄4̄6̄ D55 D20 R8 D1

10 T 2̄3̄6̄ D26 I914̄6̄ I81̄46̄ R7

11 D301̄2̄ T 4̄ R31̄2̄ R21̄3 R62̄5

12 I6345 T 4̄ R17 I234̄5̄ I13̄4̄5

13 T 1̄2̄5̄6̄ D472̄ D305̄ D424 D253 D96̄

14 D261̄2̄3̄ T 1̄5̄ R103̄ D273̄4̄5̄ R83̄ R93̄

15 I121̄2̄ T 2̄3̄4̄6̄ D264̄ R41̄2̄6̄ I81̄6̄ D75

16 D301̄2̄3̄ T 3̄4̄ R31̄ R41̄ R21̄ R51̄

17 T 1̄2̄ R144̄ R114̄ R124̄ R94̄ R134̄

18 I6 R176 R166 R186 R196 R206

19 I645 T 1̄5̄ T 3̄4̄ I24̄5̄ R1224̄5̄ R20456

20 I612345 R1712 R1615 R1823 R1934 R2045

21 T 1̄4̄5̄6̄ T 2̄3̄4̄6̄ T R31̄2̄4 R14124̄ R41̄2̄6̄ R21̄34 R62̄45

22 I52̄3̄4 D263̄4̄ R4 D101̄4 I83̄45 R16 D5146 R7 R6 D353̄4̄

23 T 1̄5̄ T 3̄4̄ R31̄2̄4 R41̄2̄6̄ R51̄5̄6̄ R72̄3̄5 R82̄3̄6̄ R62̄45 R1224̄5̄ R93̄4̄6̄

R134̄5̄6̄ R20456

24 D261̄2̄ D302̄3̄ R3 D152̄6̄ R4 R2 R10 R5 D512̄3̄ R7

R8 D12̄4 R6 R9 R20

25 T 4̄5̄ R31̄2̄4 R41̄2̄6̄ R21̄34 R1113̄4̄ R11̄35̄ R1013̄5 R51̄5̄6̄ R16156 R72̄3̄5

R82̄3̄6̄ R62̄45 R93̄4̄6̄ R19346 R134̄5̄6̄ R20456

26 R14 R3 R17 R4 R11 R2 R10 R1 R16 R5

R15 R7 R18 R8 R12 R6 R19 R9 R20 R13

27 R31̄2̄4 R14124̄ R41̄2̄6̄ R17126 R21̄34 R1113̄4̄ R11̄35̄ R1013̄5 R51̄5̄6̄ R16156

R72̄3̄5 R15235̄ R82̄3̄6̄ R18236 R62̄45 R1224̄5̄ R93̄4̄6̄ R19346 R134̄5̄6̄ R20456
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TABLE II. Table of tiles in different directions. For a type of tiles, each number before a colon in the table is the
direction index, and the numbers following the colon indicate the direction of the tile. From those numbers, we could
get all the vertices for the tile. For a rhombohedron, if the numbers are abc, then the vertices of it would be: 0, ea,
eb, ec, ea+eb, eb+ec, ec+ea, ea+eb+ec, where 0 is the starting point of the tile. To make it easier to read, we
write it in the form: 0, a, b, c, ab, bc, ca, abc. For a dodecahedron, if the numbers are abcd, the vertices would be:
0, a, b, c, d, ab, bc, cd, da, abc, bcd, cda, dab, abcd. For a icosahedron, if the numbers are abcde, the vertices
would be: 0, a, b, c, d, e, ab, bc, cd, de, ea, abc, bcd, cde, dea, eab, abcd, bcda, cdea, deab, eabc, abcde.
For a triacontahedon, if the numbers are abcdef , the vertices would be: 0, a, b, c, d, e, ab, bc, cd, de, ea, abc,
bcd, cde, dea, eab, abf , bcf , cdf , def , eaf , abcf , bcdf , cdef , deaf , eabf , abcdf , bcdef , cdeaf , deabf ,
eabcf , abcdef . According to Table III, there are 60 directions for each type of tiles originally. However, due to the
rhombohedron’s threefold symmetry, it only has 20 different directions. The icosahedron has 12 different directions
due to its fivefold symmetry. Although the dodecahedron has twofold symmetry generally, it has no symmetry for the
starting point we pick. Though the triacontahedron only has the fivefold symmetry if we pick a vertex as its starting
point, we did some manipulation in generating Table I such that the starting point would always be the vertex with
the minimum coordinate in the z-direction. So we only need one triacontahedron direction (upward) to construct the
structure.

R 1 : 53̄1 2 : 3̄4̄1 3 : 4̄21 4 : 261 5 : 651 6 : 4̄5̄2 7 : 5̄32 8 : 362 9 : 463 10 : 5̄1̄3

11 : 1̄43 12 : 2̄54 13 : 564 14 : 1̄2̄4 15 : 2̄3̄5 16 : 5̄6̄1̄ 17 : 6̄2̄1̄ 18 : 6̄3̄2̄ 19 : 6̄4̄3̄ 20 : 6̄5̄4̄

D 1 : 4̄265 2 : 2653̄ 3 : 653̄4̄ 4 : 53̄4̄2 5 : 3̄4̄26 6 : 4̄5̄36 7 : 5̄361 8 : 3614̄ 9 : 614̄5̄ 10 : 14̄5̄3

11 : 25̄1̄4 12 : 5̄1̄46 13 : 1̄462 14 : 4625̄ 15 : 625̄1̄ 16 : 631̄2̄ 17 : 31̄2̄5 18 : 1̄2̄56 19 : 2̄563 20 : 5631̄

21 : 1642̄ 22 : 642̄3̄ 23 : 42̄3̄1 24 : 2̄3̄16 25 : 3̄164 26 : 1234 27 : 2345 28 : 3451 29 : 4512 30 : 5123

31 : 35̄6̄2̄ 32 : 5̄6̄2̄4 33 : 6̄2̄43 34 : 2̄435̄ 35 : 435̄6̄ 36 : 1̄6̄3̄5 37 : 6̄3̄54 38 : 3̄541̄ 39 : 541̄6̄ 40 : 41̄6̄3̄

41 : 6̄4̄15 42 : 4̄152̄ 43 : 152̄6̄ 44 : 52̄6̄4̄ 45 : 2̄6̄4̄1 46 : 5̄213̄ 47 : 213̄6̄ 48 : 13̄6̄5̄ 49 : 3̄6̄5̄2 50 : 6̄5̄21

51 : 324̄6̄ 52 : 24̄6̄1̄ 53 : 4̄6̄1̄3 54 : 6̄1̄32 55 : 1̄324̄ 56 : 5̄4̄3̄2̄ 57 : 4̄3̄2̄1̄ 58 : 3̄2̄1̄5̄ 59 : 2̄1̄5̄4̄ 60 : 1̄5̄4̄3̄

I 1 : 35̄6̄2̄4 2 : 1̄6̄3̄54 3 : 6̄4̄152̄ 4 : 5̄213̄6̄ 5 : 324̄6̄1̄ 6 : 5̄4̄3̄2̄1̄ 7 : 4̄2653̄ 8 : 4̄5̄361 9 : 25̄1̄46 10 : 631̄2̄5

11 : 1642̄3̄ 12 : 12345

T 123456

TABLE III. Table of rotation vectors. Table I of the 27 types of complete vertices does not show all possible directions.
Each tile configuration of the 27 rows in Table I can be rotated by particular angles and get congruent configurations
of tiles. In order to get all possible types of complete vertices with consideration of directions, we generate the table
of rotation vectors as below. Both Table I and Table II should be converted by Table III to figure out all direction
choices. The way to do it is to change all the numbers representing vectors and directions (not including direction
indices in Table II) according to the numbers in Table III. For example, if we want to rotate the cluster by 234516 in
Table III, we need to change 1, 2, 3, 4, 5, 6 into 2, 3, 4, 5, 1, 6 for all numbers in two tables above, which means D261̄3̄4̄
in Table I would be redefined as D262̄4̄5̄, and D : 26 : 1234 in Table II would be changed into D : 26 : 2345. Following
those steps and one could get all possible complete vertices taking directions into consideration. For sure some cases
would have duplicate configurations under certain rotations due to symmetry.

123456 234516 345126 451236 512346 4̄2653̄1 2653̄4̄1 653̄4̄21 53̄4̄261 3̄4̄2651 4̄5̄3612 5̄3614̄2

3614̄5̄2 614̄5̄32 14̄5̄362 25̄1̄463 5̄1̄4623 1̄4625̄3 4625̄1̄3 625̄1̄43 631̄2̄54 31̄2̄564 1̄2̄5634 2̄5631̄4

5631̄2̄4 1642̄3̄5 642̄3̄15 42̄3̄165 2̄3̄1645 3̄1642̄5 35̄6̄2̄41̄ 5̄6̄2̄431̄ 6̄2̄435̄1̄ 2̄435̄6̄1̄ 435̄6̄2̄1̄ 1̄6̄3̄542̄

6̄3̄541̄2̄ 3̄541̄6̄2̄ 541̄6̄3̄2̄ 41̄6̄3̄52̄ 6̄4̄152̄3̄ 4̄152̄6̄3̄ 152̄6̄4̄3̄ 52̄6̄4̄13̄ 2̄6̄4̄153̄ 5̄213̄6̄4̄ 213̄6̄5̄4̄ 13̄6̄5̄24̄

3̄6̄5̄214̄ 6̄5̄213̄4̄ 324̄6̄1̄5̄ 24̄6̄1̄35̄ 4̄6̄1̄325̄ 6̄1̄324̄5̄ 1̄324̄6̄5̄ 5̄4̄3̄2̄1̄6̄ 4̄3̄2̄1̄5̄6̄ 3̄2̄1̄5̄4̄6̄ 2̄1̄5̄4̄3̄6̄ 1̄5̄4̄3̄2̄6̄

TABLE IV. Table of tiles of special cases. The tiles can be drawn in the same way as Table I.

1 : T 3̄4̄ 2 : T 1̄4̄5̄6̄ 3 : R18236 4 : R93̄4̄6̄ 5 : R19346 6 : R20456 7 : R21̄34

8 : R133̄4̄6̄ 9 : R113̄4̄6̄ 10 : T 1̄2̄3̄6̄ 11 : R15236 12 : R17236 13 : I236 14 : I103̄6̄
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FIG. 13. Matching rule decoration for the unit cells of the PLI class packing.


